在许多情形中深度2就足够表示任何一个带有给定目标精度的函数。但是其代价是:图中所需要的节点数(比如计算和参数数量)可能变的非常大。理论结果证实那些事实上所需要的节点数随着输入的大小指数增长的函数族是存在的。
我们可以将深度架构看做一种因子分解。大部分随机选择的函数不能被有效地表示,无论是用深的或者浅的架构。但是许多能够有效地被深度架构表示的却不能被用浅的架构高效表示。一个紧的和深度的表示的存在意味着在潜在的可被表示的函数中存在某种结构。如果不存在任何结构,那将不可能很好地泛化。
例如,视觉皮质得到了很好的研究,并显示出一系列的区域,在每一个这种区域中包含一个输入的表示和从一个到另一个的信号流(这里忽略了在一些层次并行路径上的关联,因此更复杂)。这个特征层次的每一层表示在一个不同的抽象层上的输入,并在层次的更上层有着更多的抽象特征,他们根据低层特征定义。
需要注意的是大脑中
人类层次化地组织思想和概念;
人类首先学习简单的概念,然后用他们去表示更抽象的;
工程师将任务分解成多个抽象层次去处理;
学习/发现这些概念(知识工程由于没有反省而失败?)是很美好的。对语言可表达的概念的反省也建议我们一个稀疏的表示:仅所有可能单词/概念中的一个小的部分是可被应用到一个特别的输入(一个视觉场景)。
折叠编辑本段核心思想
把学习结构看作一个网络,则深度学习的核心思路如下:
①无监督学习用于每一层网络的pre-train;
②每次用无监督学习只训练一层,将其训练结果作为其高一层的输入;
③用监督学习去调整所有层面。